Derivatives of 2',3'-Dithiouridine and $[1-\beta-D-(2,3-Dithioxylofuranosyl)]$ uracil

Richard Johnson^a, Bhalchandra V. Joshi^a, Stephen Neidle^b, Colin B. Reese^{*a}, and Chris F. Snook^b

^a Department of Chemistry, King's College London, Strand, London WC2R 2LS, England ^b Institute of Cancer Research, Clifton Avenue, Sutton, Surrey, SM2 5PX, England

Abstract: The synthesis of 2',3'-di-(4-tolylthio)uridine (5) and $\{1-\underline{\beta}-\underline{D}-[2,3-di-(4-tolylthio)xylofuranosyl]\}uracil (7) from <math>(1-\underline{\beta}-\underline{D}-lyxofuranosyl)uracil (3)$ and uridine, respectively, is described.

A number of years ago, we reported¹ that *s*-aryl and *s*-alkyl derivatives (<u>2</u>; R = aryl and alkyl, respectively) of 2'-thiouridine can easily be prepared by heating 2,2'-anhydro- $(1-\underline{\beta}-\underline{p}-arabinofuranosyl)uracil (\underline{1})$ with aromatic and aliphatic thiols, respectively, in the presence of base. In continuation of our studies² directed towards the synthesis of 2',3'-dideoxynucleoside derivatives that are potential reverse transcriptase inhibitors³, we now report that 2',3'-di-(4-tolylthio)uridine (<u>5</u>) can be prepared in satisfactory yield from the 2',3'-di-0-mesyl-5'-0-trityl-derivative (<u>4</u>) of $(1-\underline{\beta}-\underline{p}-lyxofuranosyl)uracil (<u>3</u>),$ $and that the diastereoisomeric <math>\{1-\underline{\beta}-\underline{p}-[2,3-di-(4-tolylthio)xylofuranosyl]\}uracil (<u>7</u>) can$ similarly be prepared from 2',3'-di-0-mesyl-5'-0-trityluridine (<u>6</u>).

 $1-\beta$ -D-Lyxofuranosyluracil⁴ (3) was heated (Scheme 1a) with a slight excess of chlorotriphenylmethane in pyridine solution at 100°C for 1 hr, and the products were allowed to react with a small excess of methanesulphonyl chloride in pyridine solution to give (4). The latter compound (4), which was isolated as a crystalline solid, m.p. 229°C, in 73% overall yield, was then heated with ca. 2.6 mol. equiv. of toluene-4-thiol and ca. 2.5 mol. equiv. of sodium hydride in N,N-dimethylacetamide (DMA) solution at 100°C for 30 min. After the products had been detritylated by treatment with trifluoroacetic acid (TFA. ca. 6.25 mol. equiv.) and pyrrole⁵ (ca. 20 mol. equiv.) in dichloromethane solution at room temperature for 10 min, (5) was obtained and isolated as a crystalline solid, m.p. 164°C, in 71% overall yield for the two steps starting from (4). The constitution of (5) is based on its method of preparation, and on microanalytical⁶ and NMR (¹H and ¹³C) spectroscopic evidence. It can be seen below that the alternative structure (7) may be excluded. When 2',3'-di-O-mesyl-5'-O-trityluridine (6) was allowed to react with toluene-4-thiol and sodium hydride in DMA solution under the same conditions (Scheme 1b) and the products then detritylated, a mixture of $(\underline{7})$ and $(\underline{8})$ was obtained. Following fractionation of this mixture by chromatography on silica gel, $(\underline{7})$ and $(\underline{8})$ were isolated as crystalline solids, m.p.s 170 and 141°C, in 50 and 29.5% yield, respectively. The constitution of (7) is

firmly based on an X-ray crystal structure analysis (Figure 1), and that of (8) on its unambiguous synthesis⁷ from 2'-(4-tolylthio)uridine¹ (2; R = 4-MeC₆H₄).

<u>Reagents</u>: (i) Ph₃CCl, C₅H₅N, 100°C; (ii) CH₃SO₂Cl, C₅H₅N, RT; (iii) 4-MeC₆H₄SH, NaH, MeCONMe₂ (DMA), 100°C; (iv) CF₃CO₂H (TFA), pyrrole, CH₂Cl₂, RT.

In order to complete this study, $1-\underline{\beta}-\underline{p}$ -arabinofuranosyluracil⁸ and $1-\underline{\beta}-\underline{p}$ -xylofuranosyluracil⁹ were each converted in two steps [tritylation and mesylation, corresponding to steps (i) and (ii) in Scheme 1a] into the corresponding 2',3'-di-O-mesyl-5'-O-trityl derivatives [(<u>9</u>) and (<u>10</u>)] which had m.p.s 178-180 and 138-141°C, respectively. When the *arabino*-derivative (<u>9</u>) was allowed to react with toluene-4-thiol and sodium hydride in DMA solution at 100°C and the products then detritylated (Scheme 1c), an approximately 4:1 mixture of (<u>5</u>) and (<u>7</u>) was obtained in *ca*. 80% combined yield.¹⁰. When the *xylo*derivative (<u>10</u>) was subjected to the same two-step process (Scheme 1d), (<u>5</u>) was obtained as the sole nucleoside product in 69% isolated overall yield¹¹.

Figure 1. Computer-drawn plot of the molecular structure of (7).

In consideration of the general overall stereochemistry of the reactions between toluene-4-thiolate ions and the isomeric 2',3'-di-O-mesyl-5'-O-trityl derivatives [($\underline{4}$), ($\underline{6}$), ($\underline{9}$) and ($\underline{10}$)], all four products would be expected to have 2'- $\underline{\alpha}$ -(4-toluenethio) substituents. In the cases of substrates ($\underline{4}$) and ($\underline{9}$), this would result from direct nucleophilic attack at C-2' with inversion of configuration; in the cases of substrates ($\underline{6}$) and ($\underline{10}$), this would result from the intermediacy of 2,2'-anhydronucleoside derivatives¹². It would further appear that 2'- $\underline{\alpha}$ -(4-toluenethio) substituents do not participate in reactions at C-3' and that a 3'- $\underline{\beta}$ -(4-toluenethio) substituent can result only by direct nucleophilic attack leading to inversion at C-3' [e.g., in the reactions of ($\underline{6}$) and ($\underline{9}$)]. It seems likely that the conversion of ($\underline{9}$) into ($\underline{5}$) involves the intermediacy of a 2,3'-anhydronucleoside derivative¹².

When the bis-thioethers $[(\underline{5})$ and $(\underline{7})]$ were allowed to react with an excess of 3chloroperbenzoic acid in dichloromethane solution, the corresponding bis-sulphones $[(\underline{11})$ and $(\underline{12})]$, m.p.s 282-284 and 226-228°C, respectively, were obtained. Finally, when $(\underline{5})$ and $(\underline{7})$ were heated, under reflux, with 2.0 mol. equiv. of tri-n-butyltin hydride in the presence of azobis-isobutyronitrile in anhydrous dioxane solution, 2',3'-didehydro-2',3'dideoxyuridine¹³ (<u>13</u>) was obtained in 76 and 91% isolated yield, respectively. We are actively engaged in further studies relating to the chemistry of 2',3'-dithionucleoside derivatives.

Acknowledgements. This work has been generously supported by the MRC AIDS Directed Programme.

REFERENCES AND FOOTNOTES

- 1. Divakar, K. J.; Reese, C. B. J. Chem. Soc., Perkin Trans. 1 1982, 1625-1628.
- 2. Rao, T. S.; Reese, C. B. J. Chem. Soc., Chem. Commun. 1989, 997-998; Joshi, B.V.;
- Reese, C. B. Tetrahedron Lett. 1990, 7483-7484; Joshi, B. V.; Rao, T. S.;
- Reese, C. B. J. Chem. Soc., Perkin Trans. 1 1992, in the press.
- 3. De Clercq, E. AIDS Research and Human Retroviruses 1992, 8, 119-134.
- 4. Fecher, R.; Codington, J. F.; Fox, J. J. J. Am. Chem. Soc. 1961, 83, 1889-1895.
- 5. Reese, C. B.; Serafinowska, H. T.; Zappia, G. Tetrahedron Lett. **1986**, 27, 2291-2294.
- Satisfactory microanalytical data were obtained for all new crystalline compounds described.
- 7. Authentic compound (<u>8</u>), m.p. 141-143°C, was prepared in two steps [(i) N^1, N^1, N^3, N^3 tetramethylguanidine, DMA, 100°C, 10 min; (ii) TFA, pyrrole, CH₂Cl₂, RT] and in 89% yield from the 3'-O-mesyl-5'-O-trityl derivative of 2'-(4-tolylthio)uridine (<u>2</u>; R = 4-MeC₆H₄); it was identical [TLC (CHCl₃-MeOH, 9:1 v/v), ¹H- and ¹³C-NMR] to the minor product obtained from (<u>6</u>) [Scheme 1b].
- 8. Divakar, K. J.; Reese, C. B. J. Chem. Soc., Perkin Trans. 1 1982, 1171-1176.
- 9. Yung, N. C.; Fox, J. J. J. Am. Chem. Soc. 1961, 83, 3060-3066.
- 10. As it did not prove possible to fractionate this mixture by chromatography on silica gel, its composition was determined by ¹H-NMR spectroscopy; after the mixture had been allowed to react with an excess of 3-chloroperbenzoic acid in CH₂Cl₂ solution, the resulting sulphones [(<u>11</u>) and (<u>12</u>)] were readily separated and isolated in *ca*. 63 and 21% yield, respectively.
- 11. Although only one bis-thioether ($\underline{5}$) was obtained from ($\underline{10}$), this route is not particularly useful synthetically as $1-\underline{\beta}-\underline{D}$ -xylofuranosyluracil⁹ is much less readily accessible than $1-\underline{\beta}-\underline{D}$ -lyxofuranosyluracil⁴ ($\underline{3}$).
- 12. Fox, J. J. Pure Appl. Chem. 1969, 18, 223-255.
- Horwitz, J. P.; Chua, J.; Da Rouge, M. A.; Noel, M.; Klundt, I. L. J. Org. Chem. 1966, 31, 205-211.

(Received in UK 22 September 1992)